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SUMMARY

This paper describes development plans for a prototype servo-

controlled machine with 1 Angstrom resolution of linear motion and 50

mm range of travel. Two such devices could then be combined to produce

a two dimensional machine for probing large planar objects with atomic
resolution, the Angstrom Resolution Measuring Machine (ARMM).

INTRODUCTION

Several Angstrom resolution devices currently exist. Scanning

electron microscopes (STMs) are flexural linkage structures with Angstrom

resolution and range of motion only on the order of one micron [1].

: Because of its small range of motion, an STM can be made small enough to

make it virtually immune to thermal and vibration problems that would

plague a machine with centimeter range of motion. Researchers at the

National Physical Laboratories (NPL) in England have built a linear stage

with 1 A smoothness of motion over a range of centimeters. The stage

uses Rulon TM pads as bearings that are arranged kinematically on a Vee

way [2]. However, questions regarding long term stability of the plastic

bearings and controllability in the presence of sliding friction remain

unanswered. Current designs of other precision machines such as wafer

steppers and diamond turning machines [3] are principally performance

limited by mechanical contact between moving parts, misalignment

between actuators and bearings, bearing stability, and attainable

temperature control [4,5,6]. To help overcome these problems, coarse-fine

positioning system have evolved as shown in Figure 1. Although they can

1 This work was supported by the Center for Manufacturing Engineering of the

National Bureau of Standards.

PRE'CEDINGPAGEELANKI IOTFILI ,FD 121



|

!

|

i
i
|

|

__z

J
7.

|

i

__i
!
!

|
|

i

122

be effective, they are mechanically cumbersome and are intrinsically

difficult to control. The design envisioned for the ,_RMM would address

these issues by way of its kinematic magnetic bearing design.

The design of the /_RMM evolved into the crossed axis design shown

in Figures 2-4. A two axis version only requires fabrication and

installation of a "mirror image" of the first axis. The resultant two axis

machine would have a spherical or cubic shape to maximize structural

efficiency with respect to stiffness and thermal stability. The axis' moving

structural members would be mirror finished and be used as reflectors for

the laser interferometers that provide position feedback signals to

magnetic bearings 2. The magnetic bearing actuators would be configured

kinematically: Five magnetic bearing actuators positioned to control five

degrees -of-freedom.

TEMPERATURE CONTROL

Controlling system temperature without introducing large gradients

could be achieved by using constant or low power devices3,-operating the

system at a steady thermal state, and configuring the system as a sphere

hanging inside another temperature controlled evacuated sphere. The two

spheres would be radiantly coupled with the outer sphere cooled by a high

velocity coolant source 4. _ ......

Temperature control by radiant coupling can be effective and is not

as prone to the formation of gradients as convective cooling is. Consider

the heat transferred between two bodies by radiation:

Qnet = FI-2 t_AI(TI4-T24) _ : (1)

If 10 watts of waste heat are to be removed from 1.0 or 0.5m diameter

spheres, and temperature is to be maintained at 20oc (293 OK), then

Equation 1 can be used to deiermine that corresponding outer spheres

must be kept at 19.440407oc and 17.742068oc respectively:

Assuming steady state conditions, small deviations _iT (less than

0.1oc) in the temperature of the outer sphere will affect the amount of

power retained by the inner spheres by:

AQwatts @ 0.25m, 17.742068 C = 4.378"8T (2)

AQwatts @ 0.5m, 19.440407 C = 17.820"_T (3)

2 The axiswould be designed so servo forces from the bearings and the weight of the
pa_._aused less than 0.1 A deformation.

3 For example, magnetic bearings with heaters, piezoelectric actuators, and laser
interfer_rneters.

4 The inner sphere cannot be cooled directly because the high velocities needed to
eliminate gradients also generate turbulence and vibration.
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If deviations in the outer sphere temperature occur with a time constant

much faster than that of the inner sphere, then the thermal mass of the

inner sphere will prevent it from being affected by these variations.
In order to make a first order evaluation of various materials for the

ARMM structure, consider the time it takes the inner sphere (STi)to reach

a new equilibrium temperature given a step change in the outer sphere

temperature. Assume that the new equilibrium temperature is Tinominal +

8T i, where 8Tiis the change in temperature that causes 0.1A thermal

growth in a 0.25m segment of the structure. Given a change in the outer

sphere temperature of 8T o, then to the first order the time it takes the

inner sphere to change its temperature by 8T i via radiant coupling is

R1CpSTi
t = , (4)

4 4 + 4 43Fl_2G[Tinom-Tonom-(Tinom 8Ti) +(Tonorn+STo) ]

Table 1 illustrates this change for various candidate materials. Based on
the time evaluation, Zerodur or Invar should be used. If the thermal

diffusivity is considered, a material such as copper should be used in order

to minimize gradients 5.

By tuning power dissipation and the equivalent black body view

factor with the size of the sphere, it may be possible to utilize an

inexpensive accurate temperature control process (i.e. a phase change

process) for controlling the inner sphere's temperature. For example,

assume the outer sphere is contained in an ice water bath and the

temperature of the outer sphere is fine tuned with an electric heater. If

the inner sphere still needs to dissipate 10 Watts of power, the diameter of

the inner sphere should be about 0.1758 m if the spheres still behave like
black bodies.

This preliminary analysis gives a good indication of where to start

the design process, although it does not include transient affects nor does it

model hot spots within the sphere. Hot spots can be prevented if the

structure is suitably instrumented and zone temperature control is used.

BEARING DESIGN

The properties desirable in a bearing for the ARMM include: 1)

repeatability, 2) low friction, and 3) high stiffness. Only magnetic:

bearings have the potential to meet these requirements, and allow for easy

adjustment of performance after fabrication.

5 Zerodur, lnvar, Copper, Aluminum, Beryllium and Cast Iron are all known to have

very stable forms [7].
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A simple magnetic bearing control system is shown in Figure 5 and is
characterized by the gain (stiffness) which relates errors in position to
applied magnetic force and the bandwidth which indicates the frequency
range over which the magnetic force may be applied to reject disturbance
forces. The magnets have negative spring constants which lead to a
minimum required system bandwidth for stability of about l0 Hz for
many suspensions. Maximum achievable bandwidths range from 100 Hz
for a simple attractive-type system to 40 KHz or higher for systems
implemented with ferrite or voice coil actuators.

At low frequencies, performance is determined almost completely by
the ability of the controller to cancel disturbances. The primary control
system parameter affecting disturbance cancellation is the controller gain
which determines suspension stiffness. The higher the suspension
stiffness, the greater the ability to reject force disturbances. Depending on
the nature of the source, at high frequencies, the disturbance forces are
generally absorbed by the platten's inertia and internal damping
characteristics.

Figures 6 and 7 show the_ achievable resolution.... at various
disturbance force levels as a function of suspension stiffness and
bandwidth, respectively. The disturbance force represented is modeled as
a broad band disturbance over the entire frequency range of interest. For
the simple control system considered, the bandwidth is equal to the
natural frequency of the system.

The principal disturbance forces acting on the slide in a laboratory
environment are caused by air currents, acoustic disturbances, ground
plane motion, an'd linear actuator error motions. Figures 8 and 9 :show the
disturbance forces for impinging alr flow and acoustic disturbances
respectively. Figure 10 shows the disturbance forces as a function of base
motion for various suspension gaps. A comparison of Figures 8 through 10
shows that base motion is the largest single contributor to slide
disturbance force 6. If necessary, the sensitivity to :base motion could be
reduced by one order of magnitude by incorporating magnetic flux
feedback in the control loop and by two orders of magnitude by employing
voice coil-type actuators. Even without these changes, the total
disturbance force level should be kept below about 0.01 N (0.005 lb).

Capacitance probes or laser interferometers can be used to make
ultra precision measurements of the magnetic bearing gap. Regardless of

6 The current state of the art of vibration control centers on active (servo)

control of vibrations [8,9,10,11], and commercially available servo-controlled

systems capable of keeping table motion amplitudes below 100A @ 10 Hz have
recently become available from Barry Control and Newport Corp.
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the system used, however, a through the bearing measurement method

must be used. This maintains accuracy of the kinematic model and

provides for checking measurement closure should direct measurement of

the position and orientation of a region of the slide also be made.

If a laser interferometer system is used as a position feedback

sensor, as shown in Figure 11, then the platten must be polished to optical

quality. The cost of a laser interterometric measurement system is on the

order of $10,000 per measurement axis. It is envisioned that in the near

future the resolution of differential plane mirror interferometers will

approach the one Angstrom level 7. Hence a single magnetic bearing

supported slide would require $50,000 worth of laser interferometers.

For substantially less cost, on the order of $3,000 per axis,

capacitance probes, also shown in Figure 11, could be used. They have the

advantage of not requiring the surface of the slide to be optically polished.

The finite area of their measuring tips creates an averaging effect which

reduces the effect of surface finish errors on the gap measurement.

However, on the Angstrom level, long term drift problems may render the

probes inadequate for continuous operation of the system over a period of

days.

ACTUATORS

There are numerous actuator possibilities for the ARMM, especially if

one considers combinations of macro and micro motion systems. However,

because of the complexity of a coarse-fine actuator system, only linear

electric motors, and piezoelectric inchworm translators are considered

here.

Linear electric motors have had a practical resolution limit on the

order of 10 microinches, based on the fact that mechanical coupling and

thermal errors in existing systems begin to dominate at this resolution. If

a kinematic transmission system could filter out thermal and mechanical

errors from a linear motor, then advanced measurement and control

techniques may increase their applicability to ultra precision machines.

Typically, linear motors are controlled by current feedback from the motor

and position feedback of the slide. However, current feedback can only

provide clean motor force resolution on the order of 1/4,096 - 1/65,536.

Also for current feedback to be useful, the motor needs to be rigidly

coupled to the slide, but this permits mechanical and thermal errors to be
transmitted to the slide. Instead of current feedback from the motor, the

position of both ends of the transmission system should be measured with
a laser interferometer.

7 Discussions with Carl Zanoni, VP. Eng., Zygo Corp., Middlefield, Connecticut.
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Piezoelectric inchworm devices are high resolution actuators with

large ranges of motion. Their resolution is a function of the increment of

each step, which can be on the order of 10 -11 meters, and how the device

clamps between steps; a jerky clamping action will induce errors.

Currently available piezoelectric inchworm actuators typically have a thick
force transmission bar which a circumferential piezoelectric element

7

clamps onto. Unfortunately the bar also transmits lateral "noise" forces

from the actuator to the platten, and the bar can never be aligned

erfectly with the platten. Typical axial resolution is on the order of 50

ngstroms, although lateral errors can amount to microns. Cost of this

system is on the order of $1,700, excluding a precision power supply 8,9. _

As shown schematically in Figure 12, the wire-piezo inchworm

actuator designed for the /_RMM can deliver 0.1 /_ngstrom axial resolution -

with less than 0.1 /t_ngstrom lateral error motion. Cost to manufacture this '

:- system is on the order of $6,000, excluding a precision power supply.

Design of a control system to achieve smooth jerk-free motion from

any inchworm actuator is potentially very difficult. On the other hand, the --"

- advantages offered by piezoelectric inchworm devices include essentially

i zero thermal energy generation and virtually infinite resolution, i

KINEMATIC TRANSMISSION SYSTEMS
I
l

- The purpose of a kinematic transmission system is to negate the -

effect of non-axial motion components on the motion of a linear slide 10 by

allowing members to move (i.e. slide or deflect) in non-sensitive directions.

There are two principal types of kinematic transmissions: active and

passive. Active systems are those that use low or zero friction bearings to
- accomodate errors while maintaining high axial stiffness; however, these

would be too complex for use on the ARMM. Passive systems, on the other

hand, use flexura! elements to accomodate error motions, and include

beam, membrane, and wire type eieme-nts as shown in F-igure 13.

A wire transmission, as shown in Figure 13, is the simplest form of a i
=

kinematic transmission system and can be accurately modeled as a simple i
linear spring. The axial stiffness of the wire is a function of the cross

sectional area A of the wire, the length of the wire _, and Young's Modulus

of elasticity, E: Kaxia I = AE/_. The lateral stiffness of the wire transmission,

which should be minimal, is a function of the tension in the wire, the --

8 N-e-W lVlicropositioning Products. Burleigh Instruments, Fisher, NY. _"

- 9 Phvsik lnstrumente: The PI System Catalog. Physik lnstrumente (PI) GmbH & Co.
i

West Germany. 8/86.

10 It should also help to reduce the amount of heat transfer from the actuator to the
slide via its thin cross section.
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lateral error motion e, and the length g of the wire: Klatera I = 2T/g. By

measuring the lateral motion of the wire, the ability of the transmission

system to prevent non-axial forces from acting on the slide can be
determined.

Typically, the tension in the wire will be on the order of 4-5N (1.0

lb), just enough to keep it taught and prevent backlash. The error motion

the wire may be required to compensate for could be as large as 25_tm

(0.001 in), and the length of the wire on the order of 12-13 cm (5 in).

With these parameters, the lateral force transmitted to the slide is only on

the order of 0.0018N (0.0004 lb). If the slide has an axial stiffness on the

order of 180 x 106 N/m (106 lb/in), the resultant error motion will only

be on the order of 0.1 /_ngstroms. However, in order for the linearized

expression for lateral stiffness to be valid, the length to diameter ratio for
the wire should be on the order of 500:1. Thus the axial stiffness is limited

to: Kaxia ! = neE/2.5xl05. For the previous example, Kaxia ! = 330KN/m

(1900 lb/in). In order to increase the apparent stiffness, software based

control techniques are needed.

Much work has been done on control of flexible systems in an effort

to control more degrees of freedom than are directly measured. For

example, controlling mode shapes of large flexible structures with

application to robotic and space structures [12,13]. Subsequent work

focused on controlling motions of cantilevered robotic structures with the

assumption that only position feedback from the joints was available. The

essence of this work consisted of using analysis of joint torques to predict
and correct for deformations of the robot's structural members

[14,15,16,17]. This is a similar problem to that faced by kinematic

transmissions; however, these control techniques could not assume the

robot had end-point feedback and thus had to rely on the use of observers.

The accuracy of these techniques was only a few percent which is not

acceptable for precision applications. Research has also been directed at

increasing the performance of monolithic piezoelectric actuator-bearing

combinations, similar to ones used on STMs, but it has not addressed the

issue of using the actuators in combination with very compliant flexural

couplings [18, 19].

Figure 14 shows a first-order model of a linear slide, actuator, and

flexural kinematic transmission system. The actuator is modeled as a force

source that acts on the damped mass of the actuator and the transmission.

The transmission is the dominant spring in the system which connects the

motor (mass) to the slide, which is also modeled as a mass and damper.

The position of the slide cannot be controlled directly as the force output

from the actuator is divided amongst accelerating the motor mass,

overcoming friction, and deforming the kinematic transmission spring. The
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only way to accurately determine the force in the spring (transmission)

with high resolution is to measure the deflection of the spring

(transmission) using a laser interferometer or a capacitance probe.

SENSOR SYSTEMS

There are four principal sensor systems that need to be..... designed for

the ARMM: .... _ _ _ .
1) Environmental. Temperature, pressure, and humidity _all need to

be monitored to enable the environment to be controlled to ensure

accuracy of the machine. It is anticipated that temperature control good to:

0.01-0.001oC/cm will be required for the AI_MM_ In order t'o achieve such

high resolution and accuracy, a Mach-Zehnder interferometer wi_ll probably
be used. .... _

2) Large range of motion, high resolution. For example, the axial

position of the platten has to be measured with a resolution on the order of

1.0-0.1A over a range of motion on the order of 50 mm. Differential plane

mirror interferometers will probably be used for this application. Existing

technology allows for resolution to 7t/512 (about 10 Angstroms).
3) Small range of motion, ultra-high resolution. For example, the

lateral position of the platten, the magnetic bearing gap, needs to be
measured with a resolution of 0.1-0.01A over a range of motion on the

order of l_m. A Fabry-Perot interferometer with the capability to resolve

to _./106 could even beused f0rthis type of application where one of the

reference optics is moving orthogonal to the distance being measured.

4) Measuring location of atoms. For example, scanning tunneling
probes need to be adapted for use on the ARMM. Existing technology

developed for the STM could be used; however, a single probe would take

many thousands of years to map a 50 mm diameter specimen. Thus

multiple probe techniques w ouid be needed.

..... -_ _MOTION CONTROL SYSTEM

The resolution of the signal sent by the controller to the magnetic

beating affects the total force acting on the platten. If rixl00% of the mass

M of the platten is supported against gravity by permanent magnets or a

constant voltage supplied to the windings, then the downward acceleration

of the platten will be (1 - rl)Mg. If we assume that the magnetic bearings

must be able to exert at least twice the force required to levitate the mass

(sans force provided by permanent magnets), in the time t between servo

update times with an N bit ADC, the platten will fall an amount 5:
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fl_:_n 2 (5)
2 N-2

If 11 = 0.9, 8 = 0.1A, and N = 14, then the maximum servo update time is

204 microseconds; and if a 32 bit DSP is dedicated to each bearing, these

times are achievable. Even with a 14 bit ADC, which generally precludes

the occurrence of electrical noise problems 11, 0.1A resolution motion

control is feasible.

In order to achieve even higher resolutions, superconducting coils

powered by a ultra-high-accuracy microwave-superconducting-Josephson

junction power supply could be used. This type of power supply has been

shown by NBS researchers to produce voltages with part-per-billion

resolution. Using available superconductors that operate at liquid nitrogen

temperatures would require the bearings to be wrapped in an insulating

blanket, liquid nitrogen passed around the coils, and an electric heater

used to balance the heatflow into the structure.

CONCLUDING REMARKS

The tools for the development of the ARMM currently exist, and it

would take about two years to construct a single axis prototype. By careful

design, resolution will be increased not by a change in the mechanical

design, but by advances and changes in sensor, control system, and control

algorithm designs. Perhaps with the introduction of "warm" (20-30oC)

superconductor technologies, new sensors and devices will become

available that will push resolution limits even further.
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Table I Properties of various materials and relative time for

temperature change in a Im diameter inner sphere caused
by disturbance of 0.001°C in the outer temperature

o

control envelope to cause 0.1A thermal expansion in
a 0.25m segment I

Material

p E aexpansio n K Cp t AT a

(kg/m 3) (Gpa) (p.m/m-OK) (w/m-OK) (J/Kg-OK) (secs) (OCxl0-6) (m2/sxl0 -6)

Aluminum 2707 69 22.0 231 900 130 1.8 94.8

Beryllium 1848 275 11.6 190 1,886 352 3.4 54.5

Copper 8954 115 17.0 398 384 237 2.3 116

Grey cast iron 7200 80 11.8 52 420 300 3.4 17.2

lnvar 8000 t50 0.9 I I 515 5533 44.4 2.7

Lead 11373 14 26.5 35 130 65 1.5 23.7

Zerodur 2550 90 0.15 6 821 22,733 266 2.9

IFor the small temperature excursions considered

here, the time t is proportional to the diameter of

the sphere and inversely proportional to the

temperature excursion of the outer sphere.

ORt_NAL PAQE IS

OF POOR QUALITY
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Plane mirror or differential plane mirror interferometer
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Figure 3 Cutaway right end view of Atomic Resolution

Measuring Machine (ARMM)
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actuator Piezo. inchworm device

Invar platten, 4" Wire transmission bracket

Figure 4 Cutaway left end view of Atomic Resolution
Measuring Machine (ARMM)
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Plane mirror or differential plane
mirror interferometer

Modular magnetic

bearings y
// Capacitance

Pigure ii Possible sensor arrangements for precision

"through the bearing measurement"

Pigure 12 Schematic design of the Wire-Type Kinematic

Transmission/Piezoelectric Inchworm Actuator

designed for the Molecular Measuring Machine
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Figure 13 Types of flexural kinematic transmissions
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Figure i4 Dynamic system model of a wire-type

kinematic transmission


